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* Artificial intelligence simulates human intelligence in computer
systems, replicating the human brain’s functions.

* Machine learning (ML) is a subfield of Al that focuses on developing
algorithms and models that enable computers to learn from and
make predictions or decisions based on large amounts of data
without explicit programming.
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Figure 1. Applications of Artificial Intelligence in Kidney Transplantation. Al: artificial intel-
ligence, KT: kidney transplantation, ML: machine learning, ANNSs: artificial neural networks,
SVMs: support vector machines, SDS: surgical data science, DGF: delayed graft function, CAD:
computer-aided diagnosis.
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Why Al in kidney transplantation now?

* Wide adoption of the electronic health record system
* Growing availability of large,

* : demographics, labs, histology, imaging, molecular biomarkers(dd
cfDNA, gene expression)

 Complex and interactive clinical features, which conventional statistics
can not handle well.



Why Al in kidney transplantation now?

* Advances in ML algorithms (tree ensembles, gradient boosting,
neural nets, and reinforcement learning) and interpretability tools.

 Early evidence of improved predictive performance vs traditional risk
models in internal cohorts, potential for personalized management.



Artificial intelligence in kidney transplantation: a 30-year bibliometric analysis of research trends,
innovations, and future directions
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Overview of model types and data inputs

e Data inputs: donor factors (age, KDPI, cold ischemia time, perfusion
data), recipient factors (age, comorbidities, PRA, HLA mismatch),
intra-/post-operative data, early post-transplant labs, histology,
molecular biomarkers.

* Model types:
* Outcome prediction models (e.g., random forests, gradient boosting, Cox-ML
hybrids)
* Donor—-recipient matching/simulation models

* Immunosuppression optimization models (supervised learning, reinforcement
learning, predictive risk scores)

* Multi-modal integrative models (clinical + pathology + molecular)
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Figure 1. End-to-end data processing pipeline, from raw data to model testing. Data cleaning is detailed on the
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* KDPI,KDRI, EPTS



Prediction of graft survival
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Estimated Post Transplant Survival (EPTS)

* EPTS estimates post-transplant survival of the transplant recipient.
* The primary purpose is for kidney allocation.

* Recipient age

* Time on dialysis(excluding time before age 18)

* Prior organ transplantation

* Presence of diabetes

* KDRI/KDPI, the EPTS score was developed through statistical analysis
of data, specifically large data sets of transplant recipient outcomes.



EPTS Calculator

* EPTS is a numerical measure combining four recipient parameters
(candidate’s age

« and time on dialysis,
 current diagnosis of diabetes

« prior solid organ transplants)

* to predict post-transplant survival and aid the allocation of donor
kidneys

* The current allocation system assigns priority to the top 20% of
kidneys (as denoted by KDPI < 20) to patients with an EPTS of <20.



Artificial intelligence assisted risk prediction in
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Transplant Outcome Prediction tool
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THIS STUDY ADDS:

* The development of the UK-LTOP model using artificial intelligence to
predict living-donor kidney transplant outcomes in the UK,
showcasing superior discriminative performance and calibration
compared to existing models.

* ¢ |Insights into the challenges of creating a universal risk calculator
for organ transplantation due to significant differences between
healthcare systems in the USA and the UK.

* ¢ Fvidence that machine learning techniques can effectively use
regional transplant registry data to predict transplantation
outcomes, potentially applicable across Europe.



* The data source was the United Kingdom Transplant Registry (UKTR)
database.

* From 1 January 2007 to 1 December 2022, all living-donor kidney
transplant recipients listed in the UKTR database were included.

 Patients were monitored up until 31/05/2023.
* The maximum follow-up period was 16 years post-transplant.

* Recipients under 18 years old, ABO-incompatible recipients,
recipients with positive crossmatch (by flow cytometry) transplants,
or those who had missing survival data were excluded.



Results

 After applying the inclusion and exclusion criteria, the total number
of patients included in the analysis was 12,661 (8,863 patients in the
training dataset and 3,798 patients in the validation dataset).

* The hierarchy of selection of the cohort study is demonstrated in
Figure 1.

* The total number of independent variables available before
transplant was 42.

* After applying feature engineering and RFE, the independent
variables used for our models were further reduced to 22.



* Discriminative performance

* The XGBoost had the highest concordance index (0.72), followed by
the random survival forest (0.71).

* The optimal decision tree had the lowest concordance (0.70).



Re-evaluating the UK-LTOP performance on
different subgroups

* UK-LTOP gave a concordance index of 0.70 for the more deprived
subgroup of patients and a concordance index of 0.74 for the less deprived
subgroup.



* Results for overall graft survival

* We conducted a reiteration of the XGBoost model, altering the
measured outcome to overall graft failure instead of death-censored
graft failure.

* In the test group, the concordance index yielded a value of 0.72,
while the IBS stood at 0.09.

* The AUC exhibited a range from 0.70 to 0.76.
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Table 1. Baseline characteristics and factors included in the final model: a comparison between the training and the validation groups.

Training group (n=23,770)

Test group (n=5943)

Recipient factors
Cause of renal failure: n (%)
Diabetes/hypertension:
Glomerulonephritis/vasculitis:
Cancer:
Congenital:
Unspecified:
Vascular:
Recipient age: mean (standard deviation):
Pediatric at registration: n (%)
-No:
-Unknown:
-Yes:
Recipient weight in kg: mean (standard deviation):
-Missing data (n%):
Recipient height in cm: mean (standard deviation):
-Missing data (n%):

Recipient body mass index in kg/m% mean (standard deviation):

-Missing data (n%):
Recipient ethnicity: n (%)
White:
Asian:
Black:
Other:
Not reported:
Waiting time in days: mean (standard deviation):
-Missing data (n%):
Dialysis at registration: n (%):
Hemodialysis:
Peritoneal dialysis:
Not on dialysis:
Unknown:

5463 (22.98%)
4768 (20.06%)
127 (0.53%)
4707 (19.80%)
8566 (36.04%)
139 (0.58%)

51.18 (13.50)

18,958 (79.76%)
4728 (19.89%)
84 (0.35%)
77.24 (21.97)
93 (<1%)
169.59 (22.20)
5189 (21.80%)
26.73 (4.78)
5316 (22.36%)

17,221 (72.45%)
3539 (14.89%)
2035 (8.56%)

775 (3.26%)

200 (0.84%)
1005.717 (857.78)

118 (<1%)

11,468 (48.37%)
4069 (17.16%)
8018 (33.82%)

153 (0.65%)

1340 (22.55%)
1175 (19.77%)

9 (0.66%)
1‘I48 (19.32%)
2211 (37.20%)

0 (0.50%)
51. 15 (13.40)

4768 (80.23%)

1154 (19.42%)

1 (0.35%)

77 43 (20.86)

257 (4.32%)

170.63 (31.65)

1256 (21.13%)
26.70 (4.72)

1283 (21.58%)

4305 (72.44%)
869 (14.84%)
515 (8.67%)
200 (3.37%)

4 (0.91%)
979. 74 (805.95)
4 (<1%)

2861
995
2033
37

48.28%)
16.79%)
34.31%)
0.63%)



Graft number: n (%)

One:

Two:

Three:

More than three:
Donor factors
Donor age: mean (standard deviation):
Donor height in cm: mean (standard deviation):
Donor weight in kg: mean (standard deviation):
-Missing data (n%):

Donor body mass index in kg/m% mean (standard deviation):

-Missing data (n%):

Donor urine output in the last 24h in milliliters: mean (standard deviation):

-Missing data (n%):

Donor urine output in the last hour in milliliters: mean (standard deviation):

-Missing data (n%):

Donor creatinine in mmole/litre: mean (standard deviation):

-Missing data (n%):
Donor history of hypertension: n (%)
No:
Yes:
Unknown:
Donor history of smoking: n (%)
No:
Yes:
Unknown:
Donor amount of smoking: mean (standard deviation)
Transplant factors
HLA A mismatch: n (%)
0:
1:
2:
Unknown:
HLA B mismatch: n (%)
0:
1:
2:
Unknown:
HLA DR mismatch: n (%)
0:
1:
2:
Unknown:
Match points: mean (standard deviation):
-Missing data (n%):
Matchability band: mean (standard deviation):
-Missing data (n%):
Calculated reaction frequency: mean (standard deviation):

20,401 (85.82%)
2834 (11.92%)
463 (1.95%)
70 (0.31%)

49.41 (16.14%)
170.30 (11.78)
78.04 (18.65)
22 (<1%)
26.66 (5.44)
185 (<1%)
2800.30 (1678.61)
8502 (35.76%)
112.68 (111.10)
518 (2.1%)
81.38 (55.18)
1091 (4.5%)

16,987 (71.63%)
6300 (26.57%)
483 (2%)

10,552 (44.50%)

12,984 (54.75%)
178 (0.75%)
16.36 (12.64)

4679 (19.69%)
11,496 (48.38%)
7538 (31.72%)
57 (0.21%)

3906 (16.44%)

15,433 (64.95%)
4,374 (18.41%)
57 (0.21%)

10,097 (42.49%)
11,605 (48.84%)
2011 (8.46%)

57 (0.21%)
6.01 (2.37)
162 (<1%)

103.44 (105.21)
162 (<1%)
21.88 (34.25%)

5154 (86.72%)

678 (11.41%)

103 (1.73%)
8 (0.13%)

49.77 (15.99)
170.18 (12.03)
77.86 (18.53)
8 (<1%)
2662 (5.47)
5 (<1%)
2785 45 (1629.68)
2131 (35.85%)
111.68 (119.35)
140 (2.3%)
81.83 (56.58)
260 (4.3%)

4205 (70.97%)
1620 (27.34%)
118 (1.69%)

2633
3254

38
16.33

44.44%)
54.92%)
0.64%)
12.46)

1105
2912
1916

10

18.59%)
49%)
32.24%)
0.17%)

910
3920
1103

10

15.31%)
65.96%)
18.56%)
0.17%)

2528 (42.54%)
2883 (48.51%)
522 (8.78%)
0.17%)

2.38)
<1%)
105.84)
1%)
19.74%)

59

0(
7(

0(
10563(
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(

20. 58




Results

* Following the application of the inclusion and exclusion criteria,
29,713 patients in total (23,770 in the training dataset and 5943 in
the test dataset) were included in the study.

* The number of independent variables available before transplant
was 91.

* After RFE and feature engineering, the independent variables used
in our models were further condensed to 26.



* Results for the supervised learning methods

e Discrimination: The random survival forest and the XGBoost obtained the
highest concordance indices (0.74).

* The concordance was lowest (0.70) for the optimal decision tree.
* The AUC was highest for the XGBoost model.
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Figure 2. Actual survival probabilities were calculated using the Kaplan-Meier
survival product estimator; then the average of these values was calculated at
each time point. The average actual survival probabilities were plotted against
the equivalent predicted probabilities at different time points.

Table 3. Comparison between the UK-DTOP and the UK-KDRI in terms of
AUC score at different time points.

Year UK-KDRI UK-DTOP
Year 1 0.59 0.72
Year 2 0.61 0.73
Year 3 0.61 0.74
Year 4 0.60 0.74
Year 5 0.60 0.75
Year 6 0.60 0.75
Year 7 0.62 0.76
Year 8 0.63 0.75
Year 9 0.62 0.75
Year 10 0.64 0.73

The bold values are the highest values among in the comparison.
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Figure 3. Comparison between the UK-DTOP and the UK-KDRI in terms of
AUC over time.

Table 4. Evaluation of the AUC scores at different time points across the
more deprived and the less deprived groups.

Most deprived deprived

group Least deprived group
1year 0.74 0.70
2years 0.75 0.73
3years 0.76 0.72
4years 0.76 0.73
5years 0.75 0.73
6years 0.76 0.74
7 years 0.76 0.73
8years 0.76 0.73
Qvyears 0.77 0.73

10years 0.76 0.72
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Deceased Donor Kidney Transplant

Graft Survival Prediction

Donor's age

Donor's ethnicity

Daonor's history of hypertension

Donor's history of diabetes

Donor's Cause of Death

Donor's Height (in cm)

Donor's Weight (in kg)

HLA-DR mismatch

Calculated PRA

Danor's Creatinine

Cause of renal failure

Recipient's ethnicity

Recipient's age

Dialysis duration before transplant

Recipient's HCV status

Recipient's height (in cm)

Recipient's weight (in kg)

Asian

Anoxia

Units mg/dL

Diabetes/hypertension

Asian

Yes, duration less than 1 year

Negative

Predict Survival



Prediction of Model

Survival Probabilities

Time (years) Probability (%)
1 96.8
2 94.0
4 87.7
6 80.1
8 74.1
10 66.7
12 59.4
14 52.4

Back to Input Form
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* The concern that the calculator might inherently favor recipients with
better prognostic profiles, such as younger, non-diabetic individuals,
touches on the critical issue of fairness and equity in organ allocation.

 The UK-DTOP model aims to improve predictive accuracy of transplant
outcomes, informing but not dictating decisions.

* To avoid biases and ensure equity, the model should be integrated within
a framework respecting justice and broader allocation criteria, including
urgency and waiting time.



* Regarding donor factors, we identified five distinct donor clusters,
each with unique characteristics impacting graft survival outcomes:

* Cluster 1: Comprised younger donors with the best physiological
profiles, averaging 44.83 years in age, lower BMI, and lower creatinine
levels.

* The primary cause of death was cerebrovascular incidents, indicating
fewer complications due to the sudden nature of these events.



e Cluster 2:

* Slightly older donors with an average age of 49.20 years and higher BMI
values, presenting a more varied health landscape.

* This cluster had more donors who died from anoxia, indicating specific
organ viability challenges needing tailored management.



e Cluster 3:

* Consisted of the oldest donors with significant health challenges,
the highest BMI and creatinine levels, and a substantial proportion of
DCD donors.

* Cerebrovascular deaths were common, requiring specialized
transplant strategies due to compounded medical complexities.



e Cluster 4:

* Nearly half of the donors were DCD, facing challenges with rapid
organ retrieval.

e Similar to Cluster 3, this cluster had elevated BMI and creatinine
levels, necessitating careful handling and innovative transplant
approaches.



e Cluster 5:

* Featured the most challenging donor profiles with the highest
average age, BMI, and creatinine levels.

* It had the lowest matchability due to significant HLA mismatches
and the highest percentage of DCD donors.

* Donors often had histories of diabetes, liver disease, and smoking,
requiring rigorous pre-transplant assessments and highly customized
post-transplant care to optimize outcomes.



* The identification of a fifth cluster indicates variations in donor and
transplant characteristics that the KDRI’s quartile system does not
capture.

* By identifying this extra group, our model enhances donor
assessment precision, potentially leading to more accurate matching
between donors and recipients.
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Table 1 (continued)
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Table 3
Comparative Analysis for subgroup of studies reporting on GG and DCGF.
Large Dataset - UNOS Smaller Dataset Rest of the World
Num. of articles 6 Num. of articles 7
Num. of studies 23 Num. of studies 22
paired t-test sign test paired t-test sign test
Dif p-value n pos neg p-value Dif p-value n pos neg p-value
ANN - DT 0.005 0.384 8 5 2 0.453 ANN - DT —0.001 0.886 5 1 4 NA
Classication ANN - LR 0.007 0.444 6 4 1 0.375 ANN - LR 0.077 0.021 5 4 1 NA
(AUC) Boost - RSF —0.003 0.173 18 6 11 0.332 Bayes - LR 0.033 0.012 9 8 1 0.039
Cox - R(S)F —0.009 0.197 8 1 7 0.070 KNN - SVM 0.097 0.003 6 6 0 0.031
RSF - SVM 0.022 0.072 11 10 1 0.012 LR - SVM 0.002 0.948 6 2 2 NA
Num. of articles 3 Num. of articles +
Num. of studies 10 Num. of studies 27
paired t-test sign test paired t-test sign test
Discrimination Dif p-value n pos neg p-value Dif p-value n pos neg p-value
(C-index) Boost - Cox 0.008 0.000 9 9 0 0.004 Cox - DT 0.045 0.036 8 7 1 0.070
Boost - RSE 0.009 0.001 9 9 0 0.004 Cox - RSF 0.002 0.607 23 10 13 0.678
Cox-FR 0.002 0.210 10 7 3 0.344 V. 0.103 0.000 23 22 0 0.000
R 0.096 0.000 23 21 1 0.000
Num. of articles 3 Num. of articles 2
Num. of studies 3 Num. of studies 20
Calibration paired t-test sign test
(Brier score) Dif p-value n pos neg p-value
Boost - RSF 0.004 0.098 8 5 3 0.727

p-value < 0.05 p-value <0.10

Models of this type are found to outperform the classical Cox models and RsF
models for the C-index in the large UNOS/ SRTR data set, but the two other comparisons
with RSF vield no significant differences in performance.

Moreover, the three comparisons between RSF and Cox find no significant performance
differences.
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OPEN Predicting long-term outcomes
of kidney transplantation in the era
of artificial intelligence

Samarra Badrouchi%%3*!, Mohamed Mongi Bacha¥?3, Abdulaziz Ahmed*,
Taieb Ben Abdallah':*> & Ezzedine Abderrahim™?

Scientific Reports | (2023) 13:21273 |
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e Samarra Badrouchi et al. used five training algorithms: Artificial
Neural Networks (ANN), Extreme Gradient Boosting (XGB), K Nearest
Neighbors (KNN), DT, Logistic Regression (LL).

* The ability to quickly and accurately predict 5-year graft survival
using early, simple, noninvasive, and easy-to-collect variables
suggests that machine learning has the potential to improve the
prediction of renal transplantation prognosis and to aid in healthcare
decision-making.



* These variables included, in decreasing order of importance, the
following: hypertension, history of red-blood-cell transfusion, early
acute kidney injury post-KT, early AR, CMV infection, length of first
hospitalisation, MMF therapy, donor’s age, three-month estimated
GFR, and time on dialysis before KT.

* They included 407 KTs and divided them into two groups (group A,
with a graft lifespan greater than five years, and group B, with poor
graft survival).

* Among the 35 Al models developed, the best model had an AUC of
89.7%(Sensitivity: 91.9%; Specificity: 87.5%).



Variables

Group A Group B RR 95% CI P
Agelyear (mean) 33.4 32 0.986 0.955-1.017 NS
Male 66.2 67.4 1 - -
Gender (%)
Female 33.8 326 0.948 0.493-1.823 NS
No 39.9 326 1 -
Hypertension (%)
Yes 60.1 67.4 1.371 0.715-2.631 NS
No 94.7 97.8 1 - -
Diabetes (%)
Yes 5.3 2.2 0.275 0.036-2.072 NS
Negative 97 93.5 1 - -
Viral hepatits B (%)
Positive 3 6.5 2.220 0.596-8.271 Ns
. Negative 85.2 86.5 1 - -
Viral hepatits C (%)
Positive 14.8 13.5 0.899 0.331-2.443 NS
Vascular 8 6 1 -
Glomerular 41.3 43.5 0.649 0.240-1.755 NS
Nephropathy (%) Tubulo-interstitial 21.6 15.2 0.434 0.135-1.399 NS
Hereditary 5.8 2.2 0.230 0.026-2.057 NS
Undetermined 233 26.1 0.690 0.238-2.007 NS
PD 19.4 10.9 1 -
Dialysis modality (%) —
Recipient HD 74.5 87 2.082 0.792-5.471 NS
Dialysis duration/year (Mean) 3.5 3.7 1.001 0.994—1.009 NS
No 38.2 26.1 1 - -
Transfusion (%)
Yes 6l.8 73.9 1.753 0.878-3.501 NS
B Negative 85.9 826 1 -
Cytotoxic antibodies (%)
Positive 14.1 17.4 1.280 0.565-2.899 NS
[} 17.5 19.6 1 - -
Total HLA MM (%) 1-2 33.5 32.6 0.868 0.360-2.094 NS
=3 49 47.8 0.870 0.380-1.990 NS
0 MM 34.9 325 1 - -
HLA- MM A (%) 1 MM 56.2 47.8 1111 0.564-2.190 NS
MM 14.4 15.2 1.096 0.401-2.994 NS
0 MM 29.4 36.9 1 -
HLA-MM B (%) 1 MM 56.2 47.8 0.676 4—1.327 NS
2 MM 14.4 15.2 0.839 328-2.150 NS
0 MM 40.4 43.5 1 -
HLA-MM DR (%) I MM 50.7 47.8 0.878 0.461-1.670 NS
2 MM 8.9 8.7 0.913 0.292-2.852 NS
Age/year (mean) 40.1 43.5 1.022 0.997-1.048 NS
<45 years 63.2 43.5 1 -
Age (%) =
=45 years 36.8 56.5 2.229 1.198-4.147 <0.02
Male 52.9 50 1 - -
Gender (%)
Female 47.1 50 0.890 0.482-1.644 NS
Donor M—M 30.5 283 1 -
Gender match (%) F—F 16.9 10.9 0.694 0.236-2.038 NS
Donor— recipient F—M 35.5 36.9 1.124 0.523-2.417 NS
M—F 17.1 23.9 1.501 0.635-3.552 NS
Living 84.8 82.6 1 - -
Donor type (%)
: Deceased 15.2 17.4 1.171 0.519-2.645 NS
Cold ischemia/hour (mean) 21.8 0.981 0.856—-1.124 NS
<20h 36.4 1 - -
Cold ischemia (%)
=20h 63.6 0.880 0.189-4.085 NS
Procedure —
‘Warm ischemia/min (mean) 38.2 1.018 0.990-1.046 NS
<30 min 18.6 17.4 1 - -
‘Warm ischemia (%)
=30 min 81.4 826 1.082 0.483-2.427 NS

Continued




Variables Group A Group B RR 95% CI P
_ Yes 88.9 913 1 - -
Induction (%) -
No 11.1 8.7 0.993 0.870-2.662 NS
No 20.5 19.6 1 - -
Polyclonal anti-lymphocyte (%) .
Yes 79.5 80.4 1.060 0.490-2.294 NS
No 99.2 93.5 1 - -
Anti-CD3 (%) —
Yes 0.8 6.5 8.326 1.629-42.547 <0.02
No 914 95.7 1 - -
Anti-CD25 (%)
Yes 8.6 43 0.467 0.108-2.018 NS
Immunosuppressive treatment
No 438 54.3 1 - -
Cyclosporine A (%)
Yes 56.2 457 0.654 0.353-1.211 NS
No 65.7 60.9 1 - -
Tacrolimus (%)
Yes 343 39.1 1.229 0.654-2.309 NS
No 63.4 47.8 1 - -
Azathioprine (%) - —
Yes 36.6 52.2 1.893 1.021-3.507 <0.05
No 20.8 47.8 1 - -
MMEF (%)
Yes 79.2 52.2 0.286 0.152-0.538 <0.001
Length of 1st hospitalization/day (mean) 36.4 423 1.009 0.998-1.020 NS
3-month eGFR ml/min (mean) 71 56.7 0.977 0.963-0.990 0.001
Number of 1st year readmis- <3 87.3 73.9 1 - -
sions (%) =3 12.7 26.1 2417 1.168-5.001 <0.02
N No 88.7 739 1 - -
Delayed graft function (%)
Yes 113 26.1 2.755 1.322-5.739 0.007
No 64.8 348 1 - -
Acute kidney injury (%) - —
Yes 352 65.2 3.455 1.814-6.578 <0.001
No 78.4 58.7 1 - -
Post-KT Acute rejection (%) —
: Yes 216 41.3 2.553 1.349-4.833 <0.005
) No 258 13 1 -
Infections (%) v ) & PETE) 0 D AG E
i — - - ponor
U 6 %) No 60.7 58.7 1 -
rinary tract infection (%
v b Yes 393 413 1.085 o MMF Thera py
MY infection (%) No 80.3 69.6 1 -
AV infection (%
Yes 19.7 304 1.787 0. 3 Month eG FR
sureical comnlication (%) No 82 80.4 1 -
urgical complication (%
& F Yes 18 19.6 1.108 0. DG F

Table 1. Relative risk of 5-year graft failure in the univariate analysis. MMF mycophen
human leucocyte antigen, MM mismatch, eGFR estimated glomerular filtration rate, CA
NS not significant, KT kidney transplantation.

donor age;
MMEF therapy;
3-month eGFR;
DGF;

number of hospital readmissions during the first year.

Number of hospital readmissions
during the first year




Variable Machine learning | Univariate LR* | Multivariate LR*
v v
v

Donor age

MMEF therapy

3-month eGFR v

Acute rejection

v
v
v
Acute kidney injury v

CMV infection

Length of the 1st hospitalization

Hypertension

Transfusion

AN N AN N N N N NN

Dialysis duration

Readmissions 1st year v v

<_
<

Delayed graft function

Azathioprine therapy v
HLA MM A
HLA MM DR

Dialysis modality

Proteinuria

Table 2. Comparison between the results of machine learning and classical statistics. MMF mycophenolate
mofetil, eGFR estimated glomerular filtration rate, CMV cytomegalovirus, HLA human leucocyte antigen, MM
mismatch. *Bivariate and multivariate logistic regression (SPSS 25).

Scientific Reports | (2023) 13:21273 |
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Cardiac Risk Stratification in Renal Transplantation Using a Form of Artificial Intelligence

Thomas F Heston, MD b . Douglas ] Norman, MD %< - John M Barry, MD %< - William M Bennett, MD %2 - Richard A Wilson, MD A obc

Am. J. Cardiol. 1997, 79, 415-417



Clinical risk factor screening alone identified 95 of 189 patients as high risk.
These 95 patients underwent thallium-201 stress testing, and 53 had either reversible or fixed defects.
The other 42 patients were classified as low risk.

This algorithm made up the “expert system,” and during the 4-year follow-up period had a sensitivity of 82%,
specificity of 77%, and accuracy of 78%.

An artificial neural network was added to the expert system, creating an expert network. Input into the neural
network consisted of both clinical variables and thallium-201 stress test data.

The expert network increased the specificity of the expert system alone from 77% to 90% (p <0.001), the accuracy
from 78% to 89% (p <0.005), and maintained the overall sensitivity at 88%

An expert network based on clinical risk factor screening and thallium-201 stress
testing had an accuracy of 89% in predicting the 4-year cardiac mortality among 189
renal transplant candidates.



Key study archetypes and what they show

 Example archetypes to mention

* DGF and 1-year graft survival prediction using donor/recipient variables plus
perfusion data

* Models incorporating Banff histology features with gene expression for
rejection risk

* Multi-omics augmentation improves risk stratification
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Figure 3. The digital pathology workflow: conventional histological slides are scanned to whole slide
imaging (WSI) and then visualized on a computer monitor where they can be freely manipulated (ro-
tated, zoomed in and out, etc. . .) by pathologists, eventually with the support of artificial intelligence
(AI) tools.



 The RENFAST (Rapid EvaluatioN of Fibrosis And vesselS Thickness) is
an Al-based algorithm developed to recognize interstitial fibrosis and
changes in vascular walls.

* This tool was trained on a series of 300 renal biopsies and achieved
better results than previously tested software and conventional light
microscopy.

* Furthermore, it performed much faster than the evaluation of glass
slides, with a 2 min average time of examination compared to 20 min
with classic methods.



* In this view, novel imaging techniques coupled with machine-
perfusion technologies offer the opportunity to deeply investigate
grafts’ function before transplantation in a non-invasive way.

* Forinstance, a recent study applied magnetic resonance imaging
(MRI) to kidneys during ex vivo normothermic machine perfusion
(35—-37 °C).

* The investigators showed how this technique may work as a reliable
method for assessing both renal metabolism and physiology,
providing clinicians with a realistic picture of critical biological
parameters, including microenvironmental oxygen availability, local
perfusion flow, and drug distribution, among others.



e Similarly, another work aimed to estimate the oxidative metabolism
of renal grafts during ex vivo organ perfusion by a 3-Tesla MRI
scanner was able to detect the oxygen-17 isomer .

* The authors elegantly recorded the levels of oxidative metabolism in
the organ, with higher rates in the renal cortex and lower in the
medulla, likely reflecting its functional quality.

* To note, MRI techniques have been employed for years to indirectly
study the functionality of renal tissue. On this tissue, brilliant articles
showed the ability of 31P MRI spectroscopy during the cold ischemia
period to forecast the likelihood of developing acute tubular
necrosis immediately after transplantation.



ORIGINAL CLINICAL SCIENCE—GENERAL

A Machine Learning Prediction Model for
Immediate Graft Function After Deceased
Donor Kidney Transplantation

Quinino, Raquel M. MD'; Agena, Fabiana PhD'; Modelli de Andrade, Luis Gustavo MD,
PhD?; Furtado, Mariane MA3; Chiavegatto Filho, Alexandre D.P. PhD3; David-Neto, Elias
MD, PhD'

Transplantation 107(6):p 1380-1389, June 2023.



January 1, 2010, and December 31, 2019

Variables related to the donor, recipient, kidney preservation, and immunology were
used.

Popular machine learning algorithms were used: eXtreme Gradient Boosting (XGBoost),
Light Gradient Boosting Machine, Gradient Boosting classifier, Logistic Regression,
CatBoost classifier, AdaBoost classifier, and Random Forest classifier.

Of the 859 patients, 21.7% (n = 186) had IGF.
The best predictive performance resulted from the eXtreme Gradient Boosting model

(AUC, 0.78; 95% ClI, 0.71-0.84,; sensitivity, 0.64; specificity, 0.78).

urine output, mean arterial pressure, blood glucose and the administration of high-dose vasopressors
were associated with DGF.
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Table 1

Applications of Al and ML in donor-recipient matching for organ transplantation.

Aspect

Description

Benefits

Examples

Type of Al Tools and Models

Data
Integration
[27]

Predictive
Modeling
[28]

Real-Time
Matching
[29]

Genomic
Integration
[30]

Operational
Efficiency
[31,32]

Combines clinical, genetic, and
demographic data from donors and
recipients.

Uses historical data to predict outcomes
such as graft survival and rejection risk.

Continuously updates and analyzes data
for real-time donor-recipient matching
and organ allocation.

Incorporates genomic data to assess
immunological compatibility and
personalize immunosuppression.
Optimizes logistical aspects, including
scheduling surgeries and managing
inventory.

Enables comprehensive
analysis and more precise
matching.

Enhances decision-making
and personalized treatment
plans.

Reduces waiting times and
increases the efficiency of
organ allocation.

Improves graft survival and
reduces adverse reactions.

Streamlines workflows and
improves resource
utilization.

Al systems integrating EHRs, genetic
profiles, and medical histories for
compatibility assessment.

ML models predicting the likelihood of
organ rejection based on pre- and post-
transplant biomarkers.

Al algorithms in platforms like UNOS
dynamically prioritizing recipients based
on current data.

Al analyzing genetic markers to tailor
immunosuppressive therapies for
individual patients.

Al systems forecasting organ demand and
optimizing surgery schedules to
minimize cold ischemia time.

Natural Language Processing (NLP)
for data extraction, Integration
platforms using ML algorithms
Regression models, Decision trees,
Random forests, Neural networks

Real-time data processing algorithms,
Dynamic prioritization algorithms,
rank search algorithms

Genomic data analysis tools, Machine
learning models for genetic
compatibility assessment

Predictive analytics platforms,
Inventory management systems using
ML, Scheduling optimization
algorithms




Table 2

Applications of Al and ML in image analysis and surgical planning for organ transplantation.

Aspect

Description

Benefits

Examples

Type of Al Tools and Models

Automated Organ
Segmentation
[51]

Anatomical Feature
Identification
[52]

Predictive Surgical
Outcomes
[53]

Personalized Surgical
Planning
[43]

Real-Time Surgical
Navigation
[47]

Minimally Invasive
Surgery
[49]

Post-Operative
Monitoring
[54]
Training and
Simulation
[55]
Interoperability and
Data Integration

[56]

Al algorithms segment organs from
imaging data such as CT and 18F
FDG PET images.

Al models identify and annotate
critical anatomical structures within
medical images.

ML models analyze pre-operative
data to predict surgical outcomes
and complications.

Al creates detailed and personalized
surgical plans based on patient data.

Al-driven systems provide real-time
guidance during surgeries using
augmented reality.

Al supports the development of
minimally invasive surgical
techniques through detailed
imaging.

Al analyzes post-operative imaging
to monitor organ function and
detect complications early.
Al-driven simulations and training
programs for surgeons using real
patient data.

Integration of Al tools with existing
hospital IT systems and imaging
devices.

Improves accuracy and speed
of organ identification and
assessment.

Enhances surgical planning
and precision.

Informs surgical decision-
making and risk management.

Increases the precision and
effectiveness of surgical
interventions.

Enhances intraoperative
accuracy and reduces the risk
of errors.

Reduces patient recovery time
and minimizes post-operative
complications.

Ensures timely intervention
and better management of
post-surgical recovery.
Improves surgical skills and
prepares surgeons for complex
procedures.

Streamlines workflow and
ensures seanless data sharing
and usage.

Al systems segmenting liver from
surrounding tissues to assess suitability for
transplantation.

Identification of blood vessels, nerves, and
tumors in pre-operative imaging for
detailed surgical mapping.

Predictive analytics for assessing risks of
organ rejection or complications based on
patient-specific factors.

Customizing surgical approaches in kidney
transplants based on anatomical variations
and pre-existing conditions.

Augmented reality overlays of critical
structures during liver transplantation to
guide surgeons.

Al-guided laparoscopic procedures in organ
transplantation, improving precision and
outcomes.

Monitoring graft health and early detection
of issues such as thrombosis o1 rejection
using Al analysis of follow-up scans.
Virtual reality simulations for transplant
surgeons to practice intricate surgical
techniques.

Al platforms integrated with hospital EHRs
and imaging systems for comprehensive
patient data analysis.

Convolutional Neural
Networks (CNNs), Image
segmentation algorithms
Image recognition models,
Deep learning algorithms

Predictive modeling tools,
Statistical analysis software

Personalized medicine
platforms, Al-driven surgical
planning software

Augmented reality (AR)
systems, Real-time image
processing algorithms
Robotic surgery platforms, Al-
assisted laparoscopic systems

Al-based monitoring systems,
Post-operative imaging
analysis tools

Virtual reality (VR) training
platforms, Al simulation tools

Interoperability software, Data
integration tools using Al
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Al in allocation: simulation and policy implications

e Use cases: prioritizing pairs with lower predicted risk, balancing
equity and utility.

* Important caution: ensure models do not introduce biases against
certain groups



Current Transplantation Reports (2021) 8:235-240
https://doi.org/10.1007/s40472-021-00336-z
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Al-guided immunosuppression optimization

* Personalize induction, maintenance regimens, and trough level
targets

* Approaches:
* Predictive risk modeling to calibrate intensity
* Reinforcement learning to propose dosing trajectories
* Biomarker-driven signals (e.g., dd-cfDNA, gene expression) guiding de-
escalation/escalation

* Qutcome signals: balancing rejection risk against infection/toxicity



Journal of

Clinical Pharmacy and Therapeutics .

ORIGINAL ARTICLE

A novel random forest integrative approach based on
endogenous CYP3A4 phenotype for predicting
tacrolimus concentrations and dosages in Chinese
renal transplant patients

Ningfang Cai MD, Xiujin Zhang BSc, Chao Zheng MD, Lijun Zhu BSc, Minfeng Zhu MD,
Zeneng Cheng PhD, Xi Luo PhD 32«

J Clin Pharm Ter.2020 Apr;45(2):318-323.



* Cai et al. evaluated the association between Tacrolimus concentrations
and endogenous CYP3A4 phenotype, CYP3AS5 genotype and clinical
variables in 182 KT recipients using RF algorithms.

* The results suggested that the endogenous CYP3A4 phenotype was the
most important biomarker for predicting Tacrolimus concentrations
and dose requirements, with the RF models exhibiting high goodness of
fit and high predictability.



Home > European Journal of Clinical Pharmacology > Article

Prediction of cyclosporine Ablood levels: an
application of the adaptive-network-based
fuzzy inference system (ANFIS) in assisting
drug therapy

Pharmacokinetics and Disposition | Published: 06 May 2008
Volume 64, pages 807—814,(2008) Cite this article

Sezer Goren, Adem Karahoca, FilizY. Onat & M. Zafer Géren &9

* They developed their model using data from 138 KT patients and
20 input parameters, concluding that it can serve as a decision
support system to assist physicians in determining the optimal
therapeutic drug dose in clinical settings.



Clinical Pharmacology
& Therapeutics

Article

Mycophenolic Acid Exposure Prediction Using Machine
Learning

Jean-Baptiste Woillard B4 Marc Labriffe, Jean Debord, Pierre Marquet

First published: 24 February 2021 | https://doi.org/10.1002/cpt.2216 | Citations: 40

* Their model was trained on 12,877 MPA AUC values from 0
to 12 h requests, collected from 6884 transplant patients.

* They developed two ML models based on two or three
concentrations of MPA measured at least at three sampling
times (20 min, 1 and 3 h after dosing).



* Their ML models performed better than maximum a posteriori (MAP)
Bayesian estimation in four independent full pharmacokinetic
datasets, leading the authors to conclude that they can be used for
routine exposure estimation and dose adjustment.



e : https://cistem.wustl.edu

An interactive tool, the CISTEM Immunosuppression Complication Risk
Rejection Tool, has been made available online for predicting complications based
on immunosuppression, utilising data from both donors and recipients.


AI-in-Kidney-Transplantation.pptx

Multi-modal integration: combining imaging,
histology, and molecular data

* Rationale: single data streams may miss signals; integration yields
robust risk stratification

* Typical gains: improved early rejection detection and graft function
prediction

e Biomarkers: dd-cfDNA, RNA-based signatures, integrated Banff
features



Dynamic prediction of renal survival among deeply
phenotyped kidney transplant recipients using artificial
intelligence: an observational, international, multicohort

study

Marc Raynaud*, Olivier Aubert*, Gillian Divard, Peter P Reese, Nassim Kamar, Daniel Yoo, Chen-Shan Chin, Elodie Bailly, Matthias Buchler,
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* In a large international, multicohort study including 13.608 KT
recipients, researchers developed DIPSO, a dynamic, integrative
system for predicting outcomes.

* They created deeply phenotyped cohorts of transplant recipients,
incorporating various data: clinical, histological, immunological
variables and repeated measurements of eGFR and proteinuria to
assess long-term allograft survival.

* Their Bayesian model demonstrated high prediction performance
(overall dynamic AUC 0.857 [95% CI 0.847—0.866]) and was validated
on a large scale, making it a potential tool for decision-making and
guiding clinicians in managing KT recipients.
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Take-home messages

Al can augment decision-making in kidney transplantation across
prediction, matching, and immunosuppression

* Success hinges on data quality, robust validation, and thoughtful
integration into care pathways

* Ethics, equity, and governance are essential for responsible
deployment



Al for intraoperative applications

* Al can be used not only in various predictive analyses, but also for
high-precision surgical operations.

* Robot-assisted kidney transplantation is a minimally invasive
approach to kidney transplantation, and has already achieved good
therapeutic results.



* Currently, Al shows great potential in preoperative care, diagnosis,
risk prediction, and surgical optimization.

* To date, more than 680 robotic-assisted kidney transplants have
been performed in Europe, and 21/27 transplants after living kidney
donation in Germany have been performed in the form of RAKT.



* From 2011 to 2023, 2,716 donor nephrectomies were performed, of
which 1,872 (69%) were performed retroperitoneally using a
laparoscopic system, 209 were performed using the da Vinci Xi
system robot (8%), and the remaining 635 (23%) were via a standard
open approach.

* The robotic donor nephrectomy technique gave better donor
outcomes compared to endoscopic surgery.



Al and postoperative management
(integrated management)

* Currently, the DRSA-U-Net denoising algorithm developed by Hang
Liu et al. has a high clinical application value by processing MRI
images of kidneys, ureters and their surrounding tissues, which can
significantly improve the clarity of the images in order to help doctors
more accurately assess the occurrence of complications after kidney

transplantation.
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* Many researchers began to use portable devices to collect
physiological data from patients at home and transmit these data
electronically to clinicians, thus enabling remote patient monitoring
(RPM).



* In addition, with the popularity of mobile drug monitoring apps,
studies have shown that these apps can significantly reduce the
volatility of immunosuppressive drugs such as tacrolimus in patients,
especially in the first year of postoperative drug concentration
variability, with remarkable clinical results.



* The application of this technology not only helps clinicians to better
monitor patients’ drug responses, but also improves the precision of
treatment, thereby effectively reducing the incidence of post-
transplant rejection and improving patients’ long-term prognosis.



* An international prospective trial initiated by Philip F Halloran et al.
the Trifecta study, explored the application of machine learning at
the genetic level, particularly in the molecular diagnosis of renal
transplant rejection [34].

* By analyzing the relationship between dd-cfDNA levels and gene
expression in renal transplant recipients prior to biopsy, the study
demonstrated through multivariate randomized forests and logistic
regression that molecular rejection variables are better predictors of
dd-cfDNA (%) than histological variables, and that there is a potential
to reduce unnecessary biopsies.



* Big data approaches are considered important tools for profiling
immune responses during kidney transplantation.

* Konrad Buscher et al. developed a new method based on gene
expression profiling, KID9plus3, which is a kidney-specific analysis
tool based on gene deconvolution that successfully identifies
molecular signatures of renal health states and immune responses,
and in further analyses, the investigators applied the PRESTO tool to
analyze gene co-regulatory networks in transplanted samples,
identifying seven different immune phenotypes that cover different
functional states from kidney graft stabilization to rejection and
fibrosis, and can provide more sensitive prognostic information than
traditional histological diagnosis.




* |n particular, in the graft survival analysis, using the KID9plus3 and PRESTO
methods, phenotype D (stable) was found to be associated with better
graft survival, whereas phenotypes A and E (representing different types of
immune responses) showed poorer graft survival.

* |n addition, LOXL2+ macrophages were identified as a marker of early
graft dysfunction and LOXL2 expression was associated with post-
transplant fibrosis.

* Immune surveillance after renal transplantation provides important
molecular tools and reveals cellular and genetic signatures associated
with graft survival, potentially helping the clinic to achieve a more accurate
assessment of immune tolerance and personalized treatment.



Virtual Biopsy

* The study by Yoo et al. introduced a novel machine learning-based
virtual biopsy system aimed at predicting histological lesions in
kidney transplant recipients by utilizing routinely available donor
characteristics.

* A comprehensive analysis was performed on 14,032 protocol
biopsies collected from 17 international centers, with a focus on the
following four key types of renal injury:

 arteriosclerosis, arteriolar hyalinosis, interstitial fibrosis, and tubular
atrophy.



* |n one study, deep learning algorithms were applied to analyse whole-slide
images from 2431 kidneys, allowing for the automated recognition of key
renal compartments, such as glomeruli, arteries, and tubules, with a high
degree of accuracy(90-96%).

* The model extracted abnormality features like glomerulosclerosis, arterial
intimal fibrosis, and interstitial abnormalities, correlating them with
pathologists’ scores and post-transplant outcomes, including graft loss and
renal function.

* This led to the development of a Kidney Donor Quality Score (KDQS),
which improved graft survival prediction and could potentially reduce
unnecessary organ discard.



* Their accessibility and practicality for use in predictive modeling.



e Overfitting is especially prevalent in complex models with a high number of
parameters, where the risk of encoding irrelevant information is substantially

increased.

* Another major limitation stems from the reliance on retrospective data,
which is often sourced from single institutions or homogenous patient

populations.

* This can introduce selection bias, as the data may not adequately represent
the heterogeneity of the broader population, thereby limiting the model’s
generalizability.



* This lack of transparency can impede clinical acceptance, as healthcare
professionals require clear, interpretable rationales for predictions in order to
make informed decisions.

* Furthermore, the inability to interpret model decisions complicates the
identification of biases or errors in the predictions, which can undermine the
model’s clinical credibility and reliability.

* Ethical concerns, particularly related to bias in training data, further exacerbate
these limitations.

« If the datasets used to train ML modaels are not representative of

diverse ﬂopulations,'the resulting models may perpetuate or even exacerbate
existing healthcare disparities.



Conclusions

* In conclusion, the integration of Al technologies in kidney
transplantation presents a promising avenue for enhancing patient
outcomes through improved predictive modelling and personalized
treatment strategies.

* As we demonstrated, Al may be an effective tool in predicting the
graft survival, immunosuppressive agent dosage estimation, virtual
biopsy, or donor-recipient pairing.



Yet, we hypothesize that numerous unknown variables and their hidden
interactions, which may be exceptionally challenging to detect using traditional
methods, can significantly influence the predictions and treatment outcomes in
patients following kidney transplantation. .

In the future, Al has the potential to empower researchers to identify and
comprehensively investigate these factors and their interactions.

However, addressing chaIIenFes such as data quality, algorithmic bias, and the
need for model interpretability is crucial for the successful implementation of
these advanced tools in clinical practice.

. Continued research and collaboration among clinicians and associate
professionals will be essential to fully realize the benefits of Al in this field.
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