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• Artificial intelligence simulates human intelligence in computer 
systems, replicating the human brain’s functions.

• Machine learning (ML) is a subfield of AI that focuses on developing 
algorithms and models that enable computers to learn from and 
make predictions or decisions based on large amounts of data 
without explicit programming.
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Why AI in kidney transplantation now?

• Wide adoption of the electronic health record system

• Growing availability of large, 

• : demographics, labs, histology, imaging, molecular biomarkers(dd
cfDNA, gene expression)

• Complex and interactive clinical features, which conventional statistics 
can not handle well.



Why AI in kidney transplantation now?

• Advances in ML algorithms (tree ensembles, gradient boosting, 
neural nets, and reinforcement learning) and interpretability tools.

• Early evidence of improved predictive performance vs traditional risk 
models in internal cohorts, potential for personalized management.



Artificial intelligence in kidney transplantation: a 30-year bibliometric analysis of research trends, 

innovations, and future directions

Ying Jia He, et al. Renal Failure,February 202547(1):2458754



Overview of model types and data inputs

• Data inputs: donor factors (age, KDPI, cold ischemia time, perfusion 
data), recipient factors (age, comorbidities, PRA, HLA mismatch), 
intra-/post-operative data, early post-transplant labs, histology, 
molecular biomarkers.

• Model types:
• Outcome prediction models (e.g., random forests, gradient boosting, Cox-ML 

hybrids)
• Donor–recipient matching/simulation models
• Immunosuppression optimization models (supervised learning, reinforcement 

learning, predictive risk scores)
• Multi-modal integrative models (clinical + pathology + molecular)
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• KDPI,KDRI, EPTS



Prediction of graft survival

• KDRI

• KDPI

• Donor Age

• Donor weight

• Donor hight

• Ethnicity

• Hx of HTN

• Hx of D.M

• Serum cr

• Cause of Death(CVA..)

• DCD

• HCV status



Estimated Post Transplant Survival (EPTS)

• EPTS estimates post-transplant survival of the transplant recipient.

• The primary purpose is for kidney allocation.

• Recipient age

• Time on dialysis(excluding time before age 18)

• Prior organ transplantation

• Presence of diabetes

• KDRI/KDPI, the EPTS score was developed through statistical analysis 
of data, specifically large data sets of transplant recipient outcomes.



EPTS Calculator

• EPTS is a numerical measure combining four recipient parameters 
(candidate’s age

• and time on dialysis,

• current diagnosis of diabetes

• prior solid organ transplants)

• to predict post-transplant survival and aid the allocation of donor 
kidneys

• The current allocation system assigns priority to the top 20% of 
kidneys (as denoted by KDPI < 20) to patients with an EPTS of ≤20.
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THIS STUDY ADDS: 

• The development of the UK-LTOP model using artificial intelligence to 
predict living-donor kidney transplant outcomes in the UK, 
showcasing superior discriminative performance and calibration 
compared to existing models. 

• • Insights into the challenges of creating a universal risk calculator 
for organ transplantation due to significant differences between 
healthcare systems in the USA and the UK. 

• • Evidence that machine learning techniques can effectively use 
regional transplant registry data to predict transplantation 
outcomes, potentially applicable across Europe. 



• The data source was the United Kingdom Transplant Registry (UKTR) 
database.

• From 1 January 2007 to 1 December 2022, all living-donor kidney
transplant recipients listed in the UKTR database were included. 

• Patients were monitored up until 31/05/2023.

• The maximum follow-up period was 16 years post-transplant. 

• Recipients under 18 years old, ABO-incompatible recipients, 
recipients with positive crossmatch (by flow cytometry) transplants, 
or those who had missing survival data were excluded. 



Results

• After applying the inclusion and exclusion criteria, the total number 
of patients included in the analysis was 12,661 (8,863 patients in the 
training dataset and 3,798 patients in the validation dataset). 

• The hierarchy of selection of the cohort study is demonstrated in 
Figure 1. 

• The total number of independent variables available before 
transplant was 42.

• After applying feature engineering and RFE, the independent
variables used for our models were further reduced to 22.



• Discriminative performance

• The XGBoost had the highest concordance index (0.72), followed by 
the random survival forest (0.71). 

• The optimal decision tree had the lowest concordance (0.70). 



Re-evaluating the UK-LTOP performance on 
different subgroups

• UK-LTOP gave a concordance index of 0.70 for the more deprived 
subgroup of patients and a concordance index of 0.74 for the less deprived
subgroup. 



• Results for overall graft survival

• We conducted a reiteration of the XGBoost model, altering the 
measured outcome to overall graft failure instead of death-censored 
graft failure.

• In the test group, the concordance index yielded a value of 0.72, 
while the IBS stood at 0.09.

• The AUC exhibited a range from 0.70 to 0.76. 
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Results

• Following the application of the inclusion and exclusion criteria, 
29,713 patients in total (23,770 in the training dataset and 5943 in 
the test dataset) were included in the study.

• The number of independent variables available before transplant
was 91.

• After RFE and feature engineering, the independent variables used 
in our models were further condensed to 26. 



• Results for the supervised learning methods

• Discrimination: The random survival forest and the XGBoost obtained the 
highest concordance indices (0.74). 

• The concordance was lowest (0.70) for the optimal decision tree.

• The AUC was highest for the XGBoost model.





https://dtop.organpredict.ai/datainput







• The concern that the calculator might inherently favor recipients with 
better prognostic profiles, such as younger, non-diabetic individuals, 
touches on the critical issue of fairness and equity in organ allocation. 

• The UK-DTOP model aims to improve predictive accuracy of transplant 
outcomes, informing but not dictating decisions.

. 

• To avoid biases and ensure equity, the model should be integrated within 
a framework respecting justice and broader allocation criteria, including 
urgency and waiting time.

•



• Regarding donor factors, we identified five distinct donor clusters, 
each with unique characteristics impacting graft survival outcomes:

• Cluster 1: Comprised younger donors with the best physiological 
profiles, averaging 44.83 years in age, lower BMI, and lower creatinine 
levels.

• The primary cause of death was cerebrovascular incidents, indicating 
fewer complications due to the sudden nature of these events.



• Cluster 2: 

• Slightly older donors with an average age of 49.20 years and higher BMI 
values, presenting a more varied health landscape.

• This cluster had more donors who died from anoxia, indicating specific 
organ viability challenges needing tailored management.



• Cluster 3:

• Consisted of the oldest donors with significant health challenges, 
the highest BMI and creatinine levels, and a substantial proportion of 
DCD donors. 

• Cerebrovascular deaths were common, requiring specialized 
transplant strategies due to compounded medical complexities.



• Cluster 4:

• Nearly half of the donors were DCD, facing challenges with rapid 
organ retrieval. 

• Similar to Cluster 3, this cluster had elevated BMI and creatinine
levels, necessitating careful handling and innovative transplant 
approaches.



• Cluster 5: 

• Featured the most challenging donor profiles with the highest 
average age, BMI, and creatinine levels. 

• It had the lowest matchability due to significant HLA mismatches 
and the highest percentage of DCD donors. 

• Donors often had histories of diabetes, liver disease, and smoking,
requiring rigorous pre-transplant assessments and highly customized 
post-transplant care to optimize outcomes.



• The identification of a fifth cluster indicates variations in donor and 
transplant characteristics that the KDRI’s quartile system does not 
capture. 

• By identifying this extra group, our model enhances donor 
assessment precision, potentially leading to more accurate matching
between donors and recipients.



Transplantation Reviews 39 (2025) 100934 









Models of this type are found to outperform the classical Cox models and RSF 
models for the C-index in the large UNOS/ SRTR data set, but the two other comparisons 
with RSF yield no significant differences in performance.
Moreover, the three comparisons between RSF and Cox find no significant performance 

differences.
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• Samarra Badrouchi et al. used five training algorithms: Artificial 
Neural Networks (ANN), Extreme Gradient Boosting (XGB), K Nearest 
Neighbors (KNN), DT, Logistic Regression (LL). 

• The ability to quickly and accurately predict 5-year graft survival 
using early, simple, noninvasive, and easy-to-collect variables 
suggests that machine learning has the potential to improve the 
prediction of renal transplantation prognosis and to aid in healthcare 
decision-making. 



• These variables included, in decreasing order of importance, the 
following: hypertension, history of red-blood-cell transfusion, early 
acute kidney injury post-KT, early AR, CMV infection, length of first 
hospitalisation, MMF therapy, donor’s age, three-month estimated 
GFR, and time on dialysis before KT. 

• They included 407 KTs and divided them into two groups (group A, 
with a graft lifespan greater than five years, and group B, with poor 
graft survival). 

• Among the 35 AI models developed, the best model had an AUC of 
89.7%(Sensitivity: 91.9%; Specificity: 87.5%). 





Donor AGE
MMF Therapy
3 Month eGFR
DGF
Number of hospital readmissions 
during the first year
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• Clinical risk factor screening alone identified 95 of 189 patients as high risk. 
• These 95 patients underwent thallium-201 stress testing, and 53 had either reversible or fixed defects. 
• The other 42 patients were classified as low risk. 

• This algorithm made up the “expert system,” and during the 4-year follow-up period had a sensitivity of 82%, 
specificity of 77%, and accuracy of 78%.

• An artificial neural network was added to the expert system, creating an expert network. Input into the neural 
network consisted of both clinical variables and thallium-201 stress test data.

•

• The expert network increased the specificity of the expert system alone from 77% to 90% (p <0.001), the accuracy 
from 78% to 89% (p <0.005), and maintained the overall sensitivity at 88%

• An expert network based on clinical risk factor screening and thallium-201 stress 
testing had an accuracy of 89% in predicting the 4-year cardiac mortality among 189 
renal transplant candidates.



Key study archetypes and what they show

• Example archetypes to mention

• DGF and 1-year graft survival prediction using donor/recipient variables plus 
perfusion data

• Models incorporating Banff histology features with gene expression for 
rejection risk

• Multi-omics augmentation improves risk stratification









• The RENFAST (Rapid EvaluatioN of Fibrosis And vesselS Thickness) is 
an AI-based algorithm developed to recognize interstitial fibrosis and 
changes in vascular walls.

• This tool was trained on a series of 300 renal biopsies and achieved 
better results than previously tested software and conventional light 
microscopy. 

• Furthermore, it performed much faster than the evaluation of glass 
slides, with a 2 min average time of examination compared to 20 min 
with classic methods.



• In this view, novel imaging techniques coupled with machine-
perfusion technologies offer the opportunity to deeply investigate 
grafts’ function before transplantation in a non-invasive way.

• For instance, a recent study applied magnetic resonance imaging 
(MRI) to kidneys during ex vivo normothermic machine perfusion 
(35–37 ◦C). 

• The investigators showed how this technique may work as a reliable 
method for assessing both renal metabolism and physiology, 
providing clinicians with a realistic picture of critical biological 
parameters, including microenvironmental oxygen availability, local 
perfusion flow, and drug distribution, among others.



• Similarly, another work aimed to estimate the oxidative metabolism 
of renal grafts during ex vivo organ perfusion by a 3-Tesla MRI 
scanner was able to detect the oxygen-17 isomer . 

• The authors elegantly recorded the levels of oxidative metabolism in 
the organ, with higher rates in the renal cortex and lower in the 
medulla, likely reflecting its functional quality. 

• To note, MRI techniques have been employed for years to indirectly 
study the functionality of renal tissue. On this tissue, brilliant articles 
showed the ability of 31P MRI spectroscopy during the cold ischemia 
period to forecast the likelihood of developing acute tubular 
necrosis immediately after transplantation.



Transplantation 107(6):p 1380-1389, June 2023.



January 1, 2010, and December 31, 2019

Variables related to the donor, recipient, kidney preservation, and immunology were 

used.

Popular machine learning algorithms were used: eXtreme Gradient Boosting (XGBoost), 

Light Gradient Boosting Machine, Gradient Boosting classifier, Logistic Regression,

CatBoost classifier, AdaBoost classifier, and Random Forest classifier.

Of the 859 patients, 21.7% (n = 186) had IGF. 

The best predictive performance resulted from the eXtreme Gradient Boosting model

(AUC, 0.78; 95% CI, 0.71–0.84; sensitivity, 0.64; specificity, 0.78).

urine output, mean arterial pressure, blood glucose and the administration of high-dose vasopressors 

were associated with DGF.
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AI in allocation: simulation and policy implications

• Use cases: prioritizing pairs with lower predicted risk, balancing 
equity and utility.

• Important caution: ensure models do not introduce biases against 
certain groups





AI-guided immunosuppression optimization

• Personalize induction, maintenance regimens, and trough level 
targets

• Approaches:
• Predictive risk modeling to calibrate intensity

• Reinforcement learning to propose dosing trajectories

• Biomarker-driven signals (e.g., dd-cfDNA, gene expression) guiding de-
escalation/escalation

• Outcome signals: balancing rejection risk against infection/toxicity



J Clin Pharm Ter.2020 Apr;45(2):318-323.



• Cai et al. evaluated the association between Tacrolimus concentrations 
and endogenous CYP3A4 phenotype, CYP3A5 genotype and clinical 
variables in 182 KT recipients using RF algorithms.

• The results suggested that the endogenous CYP3A4 phenotype was the 
most important biomarker for predicting Tacrolimus concentrations 
and dose requirements, with the RF models exhibiting high goodness of 
fit and high predictability.



• They developed their model using data from 138 KT patients and 
20 input parameters, concluding that it can serve as a decision 
support system to assist physicians in determining the optimal 
therapeutic drug dose in clinical settings.



• Their model was trained on 12,877 MPA AUC values from 0 
to 12 h requests, collected from 6884 transplant patients. 

• They developed two ML models based on two or three 
concentrations of MPA measured at least at three sampling 
times (20 min, 1 and 3 h after dosing).



• Their ML models performed better than maximum a posteriori (MAP) 
Bayesian estimation in four independent full pharmacokinetic 
datasets, leading the authors to conclude that they can be used for 
routine exposure estimation and dose adjustment.



An interactive tool, the CISTEM Immunosuppression Complication Risk 
Rejection Tool, has been made available online for predicting complications based 
on immunosuppression, utilising data from both donors and recipients.

• : https://cistem.wustl.edu

AI-in-Kidney-Transplantation.pptx


Multi-modal integration: combining imaging, 
histology, and molecular data

• Rationale: single data streams may miss signals; integration yields 
robust risk stratification

• Typical gains: improved early rejection detection and graft function 
prediction

• Biomarkers: dd-cfDNA, RNA-based signatures, integrated Banff 
features
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• In a large international, multicohort study including 13.608 KT 
recipients, researchers developed DIPSO, a dynamic, integrative 
system for predicting outcomes.

• They created deeply phenotyped cohorts of transplant recipients, 
incorporating various data: clinical, histological, immunological 
variables and repeated measurements of eGFR and proteinuria to 
assess long-term allograft survival. 

• Their Bayesian model demonstrated high prediction performance 
(overall dynamic AUC 0.857 [95% CI 0.847–0.866]) and was validated 
on a large scale, making it a potential tool for decision-making and 
guiding clinicians in managing KT recipients.





Take-home messages

AI can augment decision-making in kidney transplantation across 
prediction, matching, and immunosuppression

• Success hinges on data quality, robust validation, and thoughtful 
integration into care pathways

• Ethics, equity, and governance are essential for responsible 
deployment



AI for intraoperative applications

• AI can be used not only in various predictive analyses, but also for 
high-precision surgical operations.

• Robot-assisted kidney transplantation is a minimally invasive 
approach to kidney transplantation, and has already achieved good 
therapeutic results. 



• Currently, AI shows great potential in preoperative care, diagnosis, 
risk prediction, and surgical optimization. 

• To date, more than 680 robotic-assisted kidney transplants have 
been performed in Europe, and 21/27 transplants after living kidney 
donation in Germany have been performed in the form of RAKT.



• From 2011 to 2023, 2,716 donor nephrectomies were performed, of 
which 1,872 (69%) were performed retroperitoneally using a 
laparoscopic system, 209 were performed using the da Vinci Xi 
system robot (8%), and the remaining 635 (23%) were via a standard 
open approach. 

• The robotic donor nephrectomy technique gave better donor 
outcomes compared to endoscopic surgery. 



AI and postoperative management 
(integrated management)

• Currently, the DRSA-U-Net denoising algorithm developed by Hang 
Liu et al. has a high clinical application value by processing MRI 
images of kidneys, ureters and their surrounding tissues, which can 
significantly improve the clarity of the images in order to help doctors 
more accurately assess the occurrence of complications after kidney 
transplantation. 





• Many researchers began to use portable devices to collect 
physiological data from patients at home and transmit these data 
electronically to clinicians, thus enabling remote patient monitoring 
(RPM). 



• In addition, with the popularity of mobile drug monitoring apps, 
studies have shown that these apps can significantly reduce the 
volatility of immunosuppressive drugs such as tacrolimus in patients, 
especially in the first year of postoperative drug concentration 
variability, with remarkable clinical results.



• The application of this technology not only helps clinicians to better 
monitor patients’ drug responses, but also improves the precision of 
treatment, thereby effectively reducing the incidence of post-
transplant rejection and improving patients’ long-term prognosis.

.



• An international prospective trial initiated by Philip F Halloran et al. 
the Trifecta study, explored the application of machine learning at 
the genetic level, particularly in the molecular diagnosis of renal 
transplant rejection [34].

• By analyzing the relationship between dd-cfDNA levels and gene 
expression in renal transplant recipients prior to biopsy, the study 
demonstrated through multivariate randomized forests and logistic 
regression that molecular rejection variables are better predictors of 
dd-cfDNA (%) than histological variables, and that there is a potential 
to reduce unnecessary biopsies. 



• Big data approaches are considered important tools for profiling 
immune responses during kidney transplantation.

• Konrad Buscher et al. developed a new method based on gene 
expression profiling, KID9plus3, which is a kidney-specific analysis 
tool based on gene deconvolution that successfully identifies 
molecular signatures of renal health states and immune responses, 
and in further analyses, the investigators applied the PRESTO tool to 
analyze gene co-regulatory networks in transplanted samples, 
identifying seven different immune phenotypes that cover different 
functional states from kidney graft stabilization to rejection and 
fibrosis, and can provide more sensitive prognostic information than 
traditional histological diagnosis. 



• In particular, in the graft survival analysis, using the KID9plus3 and PRESTO
methods, phenotype D (stable) was found to be associated with better 
graft survival, whereas phenotypes A and E (representing different types of 
immune responses) showed poorer graft survival.

• In addition, LOXL2+ macrophages were identified as a marker of early 
graft dysfunction and LOXL2 expression was associated with post-
transplant fibrosis.

• Immune surveillance after renal transplantation provides important 
molecular tools and reveals cellular and genetic signatures associated 
with graft survival, potentially helping the clinic to achieve a more accurate 
assessment of immune tolerance and personalized treatment.



Virtual Biopsy

• The study by Yoo et al. introduced a novel machine learning-based 
virtual biopsy system aimed at predicting histological lesions in 
kidney transplant recipients by utilizing routinely available donor 
characteristics.

• A comprehensive analysis was performed on 14,032 protocol 
biopsies collected from 17 international centers, with a focus on the 
following four key types of renal injury: 

• arteriosclerosis, arteriolar hyalinosis, interstitial fibrosis, and tubular 
atrophy.



• In one study, deep learning algorithms were applied to analyse whole-slide 
images from 2431 kidneys, allowing for the automated recognition of key 
renal compartments, such as glomeruli, arteries, and tubules, with a high 
degree of accuracy(90–96%). 

• The model extracted abnormality features like glomerulosclerosis, arterial
intimal fibrosis, and interstitial abnormalities, correlating them with 
pathologists’ scores and post-transplant outcomes, including graft loss and 
renal function. 

• This led to the development of a Kidney Donor Quality Score (KDQS), 
which improved graft survival prediction and could potentially reduce 
unnecessary organ discard.



• Their accessibility and practicality for use in predictive modeling.



• Overfitting is especially prevalent in complex models with a high number of 
parameters, where the risk of encoding irrelevant information is substantially 
increased.

• Another major limitation stems from the reliance on retrospective data,
which is often sourced from single institutions or homogenous patient 
populations. 

• This can introduce selection bias, as the data may not adequately represent 
the heterogeneity of the broader population, thereby limiting the model’s 
generalizability.



• This lack of transparency can impede clinical acceptance, as healthcare 
professionals require clear, interpretable rationales for predictions in order to 
make informed decisions. 

• Furthermore, the inability to interpret model decisions complicates the 
identification of biases or errors in the predictions, which can undermine the 
model’s clinical credibility and reliability. 

• Ethical concerns, particularly related to bias in training data, further exacerbate 
these limitations.

• If the datasets used to train ML models are not representative of 
diverse populations, the resulting models may perpetuate or even exacerbate 
existing healthcare disparities.



Conclusions

• In conclusion, the integration of AI technologies in kidney 
transplantation presents a promising avenue for enhancing patient 
outcomes through improved predictive modelling and personalized 
treatment strategies. 

• As we demonstrated, AI may be an effective tool in predicting the 
graft survival, immunosuppressive agent dosage estimation, virtual 
biopsy, or donor–recipient pairing. 

• .



• Yet, we hypothesize that numerous unknown variables and their hidden 
interactions, which may be exceptionally challenging to detect using traditional 
methods, can significantly influence the predictions and treatment outcomes in 
patients following kidney transplantation. .

• In the future, AI has the potential to empower researchers to identify and 
comprehensively investigate these factors and their interactions.

• However, addressing challenges such as data quality, algorithmic bias, and the 
need for model interpretability is crucial for the successful implementation of 
these advanced tools in clinical practice.

• . Continued research and collaboration among clinicians and associate 
professionals will be essential to fully realize the benefits of AI in this field.
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